<<
>>

А. Существуют ли термодинамические основания анизотропии времени?

Точно так же, как мы можем ввести координаты одного из измерений пространства с помощью вещественных чисел, не связывая эту координацию с анизотропией этого измере-ния, мы можем ввести координаты и в топологически открытый временной континуум, не решая заранее, существуют или нет какие-либо необратимые процессы, превращающие этот континуум в анизотропный.

Поскольку состояния мира (определенные с помощью какого-либо критерия одновременности) упорядочиваются временным отношением «между», обладающим теми же формальными свойствами, что и пространственное отношение «между» на евклидовой прямой, будут существовать два противоположных друг другу смысла направления времени. И тогда мы можем приписать координату, связанную с возрастанием вещественных чисел, любому из этих направлений, а убывающий ряд чисел - другому просто путем конвенции, не предполагая, что эти два направления различаются, кроме того, и по своим структурным свойствам и что некоторые типы последовательностей состояний, встречающиеся в одном из них, никогда не встретятся в другом.

Если последняя ситуация на самом деле имеет место в силу существования некоторых видов необратимых процессов, то в таком случае временной континуум анизотропен. Точно так же, если бы существовало материальное воплощение обратимости всех процессов во времени, время было бы изотропным.

Мы должны будем определить, какие специфические свойства физического мира, если таковые существуют, определяют анизотропию времени в природе в смысле структурного различения противоположных направлений «раньше» и «позже». Тогда в десятой главе мы получим возможность рассмотреть, придают ли какие-либо характерные черты вселенной (такие, например, как гипотетический индетерминизм) физический смысл следующим свойствам времени: прохождение, возникновение, становление, ход или течение, которые понимаются как непрерывное скольжение «теперь» по оси времени вдоль структурно выделенного направления «позже чем».

Ясно, что анизотропия времени, вытекающая из существования необратимых процессов, выражается только в структурных различиях между двумя противоположными смыслами направления времени, но не дает никаких оснований для выбора одного из них как данного направления времени.

Следовательно, утверждение, что необратимые процессы делают время анизотропным, вовсе не эквивалентно таким утверждениям, как время течет в «одном направлении» («one way»), И метафора относительно стрелы вре-мени, с помощью которой Эддингтон намеревался выразить анизотропию времени, может ввести в заблуждение. Если обращать внимание только на наконечник стрелы и не обращать внимания на ее хвостовую часть, то можно прийти к мысли, что существует «течение» в одном из двух анизотропийно соотносительных смыслов.

Существенно будет начать анализ понятия необратимых во времени процессов и их отношения к анизотропии времени с рассмотрения следующего определяющего положе-ния: в какой степени, если вообще имеет смысл говорить об этом, некоторые физические процессы, происходящие в нашей вселенной, обусловливают анизотропию времени.

В каком смысле такие факты, как то, что мертвецы не встают из могил, а горящая сигарета не восстанавливается из дыма, превращают смерть или горение в необратимые процессы? Существует как нестрогий, так и строгий смысл, в котором процессы могут интерпретироваться как необратимые. Нестрогий смысл состоит в том, что обращение процессов во времени фактически никогда не происходит (или вряд ли когда-либо может произойти) по следующим соображениям: некоторые частные де-факто условия (начальные или граничные условия), существующие во вселенной независимо от какого-либо закона (или законов), совместно с соответствующим законом (или законами) делают обращение во времени де-факто несуществующим, хотя никакой закон или комбинация законов сами по себе не запрещают такого обращения. Строгий смысл необратимости состоит в том, что обращение во времени невозможно потому, что оно исключается каким-то законом или комбинацией законов. В дальнейшем, чтобы провести различие между этими двумя смыслами необратимости, мы будем пользоваться терминологией Мельберга и называть строгий вид необратимости, опирающийся на законы, помологическим, а нестрогий вид необратимости будем называть необратимостью де-факто или номологически случайной (nomologically contingent).

При отсутствии оговорок приписывание необратимости тому или иному процессу означает для нас не более чем неосуществление или возможное неосуществление его обращения во времени и оставляет открытым вопрос, является ли необратимость по своему происхождению необратимостью де-факто или помологической. Это нейтральное употребление термина «необратимый» по отношению к помологическому и де-факто смыслам дает некоторые преимущества при решении вопроса об анизотропии времени. Ибо для существования анизотропии не имеет решающего значения, является ли отсутствие временного обращения некоторых процессов помологическим или же оно отсутствует де-факто. Вместо этого вопрос ставится так: возможно или невозможно обращение во времени этих процессов всегда (или почти всегда) независимо от того, каковы причины этого? Так, процессы пережевывания пищи или смешивания сливок с кофе являются необратимыми в этом нейтральном смысле. Следовательно, если в немом фильме, где показана группа обедающих, целые куски мяса восстанавливаются из пережеванных кусочков, а перемешанные кофе и сливки вновь разделяются на сливки и кофе, то можно сказать, что этот фильм прокручивается в обратном направлении.

Различие между нестрогой и строгой необратимостью имеет прямое отношение к тем физическим теориям, которые допускают резкое различие между законами и граничными условиями в силу повторяемости определенных видов событий в различных точках пространства в разные моменты времени. Однако в высшей степени сомнительно, чтобы это различение могло проводиться в космологии всегда и везде. Ибо, какие имеются основания для самонадеянных предположений о том, что такие свойства вселенной, как пространственная вездесущность и временная непрерывность, являются граничными условиями, а не законами? Поясним на графике смысл предположения о существовании таких типов последовательностей состояний АВСD и о несуществовании противоположных последовательностей DСВА, которые имеют место с возрастанием времени. Допустим, например, что АВСD на диаграмме выражают следующие друг за другом состояния дома, который с возрастанием времени или в направлении «позже» сгорает дотла.

Тогда во вселенной с возрастанием времени не будет таких типов последовательности, как DСВА, поскольку последняя представляла бы собой восстановление дома из пепла. Таким образом, противоположный вид последовательности DСВА существовал бы только в направлении уменьшения времени или в направлении «раньше», тогда как первый вид последовательности АВСD в последнем направлении невозможен. В соответствии с этим сравнение

структур противоположных направлений времени показывает, что, по крайней мере, для отрезка космического времени, составляющего настоящую эпоху в нашей простран-ственной области мира, виды последовательностей состояний, обнаруживающиеся в одном направлении времени, отличаются от тех, которые мы находим в другом. Следовательно, говорим мы, по крайней мере, локально, время анизотропно. Следует отметить, что анизотропия физического времени состоит только в структурных различиях между противоположными направлениями физического времени и не дает никакой основы для выделения одного из двух противоположных направлений как «данного».

Зависимость такой анизотропии, которая свойственна времени, от необратимого характера процессов, происходящих во вселенной, может быть продемонстрирована еще более ясно указанием на то, какое было бы время, если бы не было никаких необратимых процессов, а были только процессы обратимые, причем их обратимость была бы не только помологической, но и де-факто. То есть обращение времени не только допускалось бы соответствующими законами, но и реально существовало бы благодаря наличию требуе-мых начальных (граничных) условий. Чтобы предупредить неверное истолкование такой гипотетической возможности, необходимо подчеркнуть, что в этом случае было бы невоз-можным и наше собственное бытие как человеческих существ, обладающих памятью. В дальнейшем мы поясним это утверждение. Следовательно, было бы, по существу, непра-вильно пытаться вообразить постулированную возможность, опираясь на наш наполненный памятью опыт, и затем впасть в уныние от неудачи подобной попытки.

Это все равно, что пытаться вообразить цвет излучения в инфракрасной и ультрафиолетовой частях спектра.

Для доказательства того, что в случае де-факто обратимости всех видов естественных процессов время было бы действительно изотропным, мы рассмотрим пример такого обратимого физического процесса, а именно качение шара (без трения) вдоль траектории АD, скажем от А к D, в соответствии с законами Ньютона1. (1 В данной ситуации, когда предполагается существование только обратимых процессов, отношение «раньше чем», илшлицитно содержащееся в утверждении, что шар движется от А к D (или в противоположном направлении от D к А), должно лишиться своей привычной опоры на анизотропию времени. Ибо а мире, состоящем исключительно из обратимых процессов, который мы сейчас рассматриваем, утверждение, что данное движение шара происходило от А к D, а не от D к А, выражает не объективное физическое отношение между двумя крайними событиями движения, а только соглашение о том, что мы приписываем меньшую величину времени событию нахождения шара в A, а не в D. И от-сутствие здесь объективного физического основания для утверждения, что движение происходило от одной из двух точек к другой, подтверждает факт, отмеченный нами в седьмой главе, что если все процессы природы обратимы де-факто, тогда не существует никаких физических оснований для выделения одного из двух состояний движения шара как «причины» другого.)

Это движение обратимо как в номологическом смысле, так и де-факто, потому что 1) законы Ньютона также допускают и другое движение, от D к А, которое представляет собой обратное во времени движению от А к D, и 2) существуют действительные примеры обращения такого движения, поскольку можно получить начальные условия, необходимые для осуществления этого обратного движения.

Изобразим на временной оси специальный случай, когда шар катится от А к D и, отталкиваясь, катится обратно от D к А. Нулевой момент времени выберем для обозначения события, когда шар находился в точке D. Буквы А, В, С и D на временной оси нашей диаграммы будут обозначать соответствующие события нахождения шара в точке пространства A и т.д., выражая тем самым последовательность состояний (событий) АВСD движения «туда», а затем состояний DСВА движения «обратно».

С математической точки зрения помологическая обратимость процессов, допускаемых законами Ньютона, выражается в том, что вид ньютоновских уравнений движения оста-ется неизменным, или инвариантным, при замене в них +t на –t.Поэтому мы говорим, что законы Ньютона для движения, в котором трение отсутствует, «симметричны по отношению к времени».

И следовательно, наша диаграмма показывает, что любое состояние шара, допускаемое законами Ньютона в направлении времени +t, остается равноправным с любым состоянием, соответствующим -t, согласно этим же законам. Иначе говоря, в случае обратимых процессов последовательности (допускаемых) состоя-ний вдоль противоположных направлений временной оси представляют собой, так сказать, зеркальные отражения друг друга. Поэтому, если бы все процессы природы были обратимы де-факто, время было бы изотропно.

Таким образом, представляется еще более очевидным, что структура времени не является чем-то не зависящим от тех или иных видов процессов, происходящих во все-ленной. Напротив, природа времени зависит именно от характера этих процессов.

В последнем подстрочном примечании мы обращали внимание на то, что в мире, где существуют только обратимые процессы, логический статус отношения «раньше чем» должен быть расширен, учитывая неудачу, постигшую Рейхенбаха, когда он пытался провести логическое различие между 1) этим отношением и соответствующими отношениями, которые существуют в мире, содержащем обратимые процессы, и 2) двумя соответствующими причинными отношениями.

Прежде всего, необходимо отметить, что если трехчленное отношение, обладающее всеми формальными свойствами о-отношения «между», без труда можно определить с помощью частного двучленного отношения последовательности, то обратный вывод невозможен, поскольку в данной системе последовательного порядка мы можем отличить одно «направление» от противоположного, тогда как система о-отношения «между» сама по себе не позволяет провести такую дифференцировку. Этот факт можно проиллю-стрировать на примере с евклидовой прямой. Точки прямой составляют систему о-отношения «между». Этот порядок внутренне присущ прямой линии в том смысле, что ее точное определение не включает, по существу, никаких ссылок на какого-либо внешнего наблюдателя и его точку зрения. Последовательный порядок точек в конкретном отношении «налево от» является внешним в смысле необходимости ссылки на внешнего наблюдателя, по крайней мере, для того, чтобы установить асимметричное двучленное отношение «налево от» между двумя произвольно выбранными точками отсчета U и V. Тогда, коль скоро мы ввели асимметричное двучленное отношение между двумя такими точками, мы можем использовать систему о-отношения «между», внутренне присущую линии, для определения порядка последовательности повсюду на этой линии. Если говорить о том, что данный порядок последовательности точек на линии в отношении «налево от» является конвенциональным, то это есть выражение иными словами того, что этот порядок является внешним в указанном выше смысле. Для частной внешней точки зрения, конечно, не является произвольным, находится ли данная точка х налево от другой точки у или наоборот. В отличие от «внешнего» характера последовательного порядка точек на линии, присущего отношению «налево от», последовательный порядок вещественных чисел, характеризующий отношение «меньше чем», является в указанном выше смысле внутренним, поскольку любые два вещественных числа могут быть расположены в порядке их величин без каких-либо ссылок на сущности, находящиеся вне области вещественных чисел. Весьма важно указать на то (как это уже делали и Рейхенбах и автор данной книги в своих прежних публика-циях), что расположение в последовательном порядке устанавливает различие между направлениями независимо от того, производится ли оно на основании внутренних или внешних критериев. Смешивая внешний характер отношений последовательности с ненаправленностью, Рейхенбах говорит, что отношение «налево от» точек на линии, хотя и представляет собой последовательность, все же не является «однонаправленным», утверждая тем самым, что два противоположных направления невозможно различить друг от друга. Отношение же «меньше чем» в области вещественных чисел он рассматривает и как последовательное и как однонаправленное2. (2Обстоятельный анализ оценки Рейхенбахом общих логических свойств «однонаправленного» отношения как отличного от «просто» отношения последовательности.)

Однако он вынужден был сделать такой вывод только потому, что упустил из виду следующее обстоятельство: будучи асимметричным, отношение последовательности уже автоматически обладает направлением даже в том случае, если последовательность устанавливается на основе внешних критериев. И этот недосмотр привел его к различению отношений последовательности, не обладающих направлением, от отношений последовательности, обладающих направлением. Последняя ошибка в свою очередь вытекала из неправильного предположения о возможности провести различие между простой последовательностью, которую он называл «порядком», и «направлением» времени. Такое различие он пытался обосновать при помощи указания на то, что в противоположность полной временной симметрии фундаментальных законов ньютоновой механики и специальной теории относительности время в этих теориях предполагает последовательность. Однако разделение, предложенное Рейхенбахом, следует заменить разделением между внутренне изотропным и внутренне анизотропным видами времени, к объяснению чего мы сейчас и перейдем.

Обратимые де-факто процессы внутренне определяют временной порядок только в смысле о-отношения «между» при соответствующих граничных условиях, однако симмет-ричное причинное отношение, связанное с этими процессами, не дает никакого физического основания для внутреннего последовательного порядка времени. Но, как это было возможно в случае евклидовой прямой, где в присущее ей о-отношение «между» можно было ввести последовательный порядок, опираясь на внешнее асимметричное дву-членное отношение двух выбранных точек отсчета U и V, можно произвести выбор и между двумя состояниями отсчета во времени, которому внутренне присуще только о-отношение «между», и сделать это время с внешней точки зрения последовательным, обозначив одно из этих состояний как более позднее и приписав ему, соответствующее вещественное число в качестве обозначения момента времени. В, этом смысле мир, где не существует необратимых процессов, может, тем не менее, быть описан в последовательном времени, и это описание будет вполне законно и содержательно.

Мы видим, что если даже вселенная не содержит никаких процессов, необратимых в номологическом смысле или в смысле де-факто, и если, тем не менее, для ее описания необходимо последовательное время, в таком случае эта последовательность должна иметь внешнюю компоненту. Ибо при наличии соответствующих граничных условий эта гипотетическая обратимая вселенная будет внутренне определяться только временным порядком о-отношения «между». И этот порядок является вдвойне изотропным в следующем смысле: во-первых, все элементарные процессы обратимы де-факто и, во-вторых, физические системы не обладают никакими свойствами, подобными энтропии, значение которых внутренне определялось бы двучленным отношением между состояниями этих систем, а классы этих состояний определяли бы последовательный поря-док в рамках этого отношения.

Однако неравновесному миру, для которого имеет силу второй закон классической термодинамики в его нестатистической форме, последнее свойство присуще на самом деле, и этим свойством является энтропия. И, следовательно, такой мир является по отношению ко времени анизотропным: его время обнаруживает своего рода различие между направле-ниями, которое обусловлено внутренне ему присущим направленным отношением последовательности «позже чем». Если мы говорим, что процессы в таком мире «необратимы», то, очевидно, наше высказывание логически отличается от утверждения о «невозвращении» какого-либо из всеобщих состояний вселенной, время которой в таком случае открыто, а возможно, также и бесконечно (в одном или обоих направлениях). Ибо время последнего вида может быть внутренне изотропным и, конечно, будет изотропным, если вселенная, обладающая им, будет содержать только процессы, обратимые де-факто. Напротив, в прежней вселенной, относящейся к типу необратимых, время которой анизотропно, имеют место два следующих свойства: во-первых, классический закон энтропии предотвращает осуществление тех же самых (неравновесных) макросостояний, определяя открытый порядок времени в силу наличия граничных условий, и, во-вторых, этот закон приводит к специфическим утверждениям относительно способа, с помощью которого можно по какому-то единому признаку проводить различие между макросостояниями, существующими в разные моменты времени.

Хотя само отношение последовательности «позже чем» не обладает каким-либо «направлением», будучи асимметричным в обычном смысле, система состояний, упорядочиваемая им, не обладая каким-либо направлением, все же обнаруживает специфические различия или анизотропию между двумя противоположными направлениями. Таким образом, когда мы говорим об анизотропии времени, не следует истолковывать ее как утверждение, эквивалентное тем, которые делаются относительно «данного» направления времени. Как правильно отмечают Смарт и Блэк, ссылка на «данное» направление времени подсказывается представлением о «течении» времени. В частности, как мы увидим в десятой главе, утверждение Рейхенбаха о «данном» направлении времени основывается на ошибочном предположении, что якобы существует физическая основа становления в смысле определяемого физическими параметрами «теперь», перемещающегося вдоль одного из двух различных в физическом отношении направлений времени. Напротив, наша характеристика физического времени как анизотропного не содержит никаких ссылок на какое бы то ни было преходящее деление времени на прошлое и будущее моментом «теперь», однонаправленное «продвижение» которого определяло бы направление времени. На самом деле, как мы покажем в десятой главе, концепция становления не имеет никакого содержательного применения к физическому времени вопреки ее связи с психологическим временем и временем здравого смысла, поскольку «теперь», по отношению к которому получает смысл различие между прошлым и будущим, в решающей степени зависит от эгоцентрической точки зрения организма, обладающего сознанием. Тем не менее, с учетом этого разъяснения мы будем для краткости использовать выражение «направление времени» в качестве синонима не только «направления в будущее» психологического времени, но и «одного из двух физически различаемых направлений времени, которое в нашей теории именуется «положительным»». Наше рассмотрение логических отношений между симметричной причинностью, открытым временем, анизотропией времени, а также решение вопроса о том, является ли присущая времени последовательность внешней или внутренней, требуют опровержения следующего утверждения Рейхенбаха:

При обсуждении проблем, связанных с временем, обычно утверждают, что только необратимые процессы придают отношению причинности асимметричность, тогда как обратимые приводят к симметричным причинным отношениям. Такие представления ошибочны. Направление времени могут определить только необратимые процессы, что же касается обратимых процессов, то они определяют скорее порядок времени и тем самым придают отношению причинности асимметричность. Отсылаем читателя к обсуждению отношения налево от... Правильным же является утверждение, что только необратимые процессы характеризуют однонаправленную причинность1. (1Г. Рейхенбах, Направление времени, стр. 51.)

Рейхенбах отмечает, что, хотя причинные процессы классической механики и специальной теории относительности являются обратимыми, эти «обратимые» теории, тем не менее пользуются временным порядком, который является последовательным. Затем он ссылается на то, что а) даже в обратимом мире причинные процессы должны быть асимметричными, и б) от необратимого мира мы требуем таких временных отношений, которые не только являются последовательными, но и «однонаправленными» точно так же, как и причинные отношения, которые являются и симметричными и однонаправленными. Однако Рейхенбах, по-видимому, совершенно упустил из виду, что если физическая теория постулирует последовательный характер времени в полностью обратимом мире, то в таком случае эта последовательность привносится в него извне и приписывание меньшего из двух вещественных чисел в качестве временного обозначения одному из двух причинно связанных событий не выражает никакой объективной асим-метрии самих причинных отношений.

Теперь мы можем перейти к рассмотрению вопроса о том, обеспечивают ли термодинамические процессы физическое основание анизотропии времени. Иначе говоря, перед нами стоит проблема, можно ли с помощью энтропии, значение которой задается вещественными числами, установить (в отличие от причинности обратимых процессов) анизотропию открытого времени, внутренне обусловливая порядок последовательности в классе состояний замкнутой системы. Прежде всего, мы рассмотрим эту проблему в свете феноменологической термодинамики классической физики. Затем перейдем к специальному рассмотрению интерпретации, основанной на понятии энтропии в статистической механике. Во второй части данной главы будет рассматриваться проблема существования неэнтропийного физического основания анизотропии времени. Будет показано, что как термодинамические, так и нетермодинамические необратимые процессы по своему характеру являются выражением необратимости де-факто, или номологически случайными.

<< | >>
Источник: А. Грюнбаум. Философские проблемы пространства и времени: Пер. с англ. Изд. 2-е, стереотипное. — М.: Едиториал УРСС. — 568 с.. 2003

Еще по теме А. Существуют ли термодинамические основания анизотропии времени?:

  1. I. Закон энтропии в классической термодинамике
  2. II. Статистическая аналогия закона энтропии