БИОСФЕРА КАК ЦЕЛОСТНАЯ СИСТЕМА
Несмотря на специфичность и самостоятельность отдельных оболочек Земли как составляющих биосферы, суммарная деятельность населяющих эти оболочки живых организмов интегрируется на уровне биосферы как целостной функциональной системы.
Выше уже показана связь гидросферы, атмосферы и почвы. На границах сред жизни регистрируются интенсивные процессы обмена органическим веществом, водой, минеральными солями и т. д. Природные границы можно рассматривать как биологически активные зоны: здесь часто обитает больше видов, через эти границы трансформируются большие потоки энергии. Важную роль в обмене веществ между атмосферой, почвой и гидросферой играет речной сток. Прибрежные мелководья морей получают огромное количество органических веществ от обитающих на суше или скапливающихся на пролете птиц. В устьях рек и в регионах мангровых зарослей обитает почти 2/3 видов промысловых рыб.Формы функциональных связей наземного и водного биоциклов[VII] весьма многообразны; по существу, лишь на уровне биосферы в целом можно судить о сложной системе обмена веществ и потоков энергии между неживой и живой материей. Биосфера как функциональная экосистема планетарного масштаба в значительной степени есть результат этих процессов.
Важная функция биосферы — устойчивое поддержание жизни — основывается на непрерывном круговороте веществ, связанном с направленными потоками энергии. Хотя биологический круговорот может быть осуществлен не только на уровне биоциклов, но и конкретных экосистем, в реальных условиях обособленных круговоротов нет: на уровне биосферы эти процессы объединяются в единую систему глобальной функции живого вещества. В этой системе не только полностью завершаются отдельные биогенные циклы, но и реализуется тесная взаимосвязь с абиотическими процессами формирования и переформирования горных пород, становления и поддержания специфических свойств гидросферы и атмосферы, образования почв и поддержания их плодородия и т.
п. В этом едином цикле функции живого вещества существенно шире, нежели осуществление круговорота отдельных элементов.Живые организмы и надорганизменные системы активно участвуют в формировании особенностей климата, типов почв, вариантов ландшафта, характера циркуляции вод и во многих других процессах, на первый взгляд не относящихся к категории биогенных. В конечном итоге многообразные формы жизни в их глобальной взаимосвязи определяют уникальные свойства биосферы как самоподцерживаю- щейся системы, гомеостаз которой запрограммирован на всех уровнях организации живой материи. Теснейшая функциональная связь биологических систем разных уровней превращает дискретные формы жизни в интегрированную глобальную систему — биосферу (И.А. Шилов, 1988; В.Е. Соколов, И.А. Шилов, 1989).
Биосфера, по В.И. Вернадскому, как целостная система обладает определенной организованностью, механизмами самоподдержания (гомеостазирования). Это выражается в регуляции постоянства газового состава атмосферы (а через озоновый экран — и физическихусловий на поверхности Земли), устойчивого состава и концентрации солей Мирового океана, несмотря на постоянный приток их с суши и т. д.
Основа таких механизмов заложена в процессах биологической природы: фотосинтез, дыхание, регуляция водного и солевого обмена организмов и др. «Живое вещество,—писал В.И. Вернадский в «Очерках геохимии»,—... становится регулятором действенной энергии биосферы... Весь поверхностный слой планеты становится таким образом через посредство живого вещества полем проявления кинетической и химической энергии». В обобщающем виде В.И. Вернадский говорил о биосфере, как «...сложном, но вполне упорядоченном механизме».
В современном выражении это можно трактовать как представление о гомеостатических реакциях на уровне биосферы. Прав А. В. Jlano (1987), выражая идеи В.И. Вернадского следующим образом: «На языке современной науки биосферу называют саморегулируемой кибернетической системой, обладающей свойством гомеостаза».
Механизмы гомеостазирования остались вне интересов В.И. Вернадского. В своей геохимической концепции для него было важно отметить роль совокупности живых организмов как целого (отсюда термин «живое вещество), преобразования их химического состава и связанные с этим перемещения молекул в глобальном круговороте, затрат энергии на жизненные процессы и т. д. Однако, когда речь идет о механизмах биологической регуляции в биосфере, обобщенное понятие живого вещества становится уже недостаточным. Регуляторная функция чувствительна к конкретным формам живых организмов и механизмов их взаимодействия. При решающей роли биологических процессов в биосфере и механизмы поддержания целостности ее представляют собой явление, в первую очередь биологическое. В наиболее общей форме можно считать, что эти механизмы основываются на таких фундаментальных свойствах жизни, как ее разнокаче- ственность (разнообразие) и системность. Именно на этих свойствах основывается и глобальная функция жизни в биосфере — поддержание биогенного круговорота вешеств.
Разнокачественность форм жизни и биогенный круговорот. Специфическое свойство жизни — обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводятся наружу. Таким образом, каждый организм или множество одинаковых организмов (популяция, вид) в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса—поддержания жизненных условий или даже их улучшения, — о чем говорилось выше, определяется тем, что биосферу населяют разные организмы (виды) с разным типом обмена веществ.
Физиологическая разнокачественность живых организмов представляет собой фундаментальное условие устойчивого существования жизни как планетарного явления. Теоретически можно представить возникновение жизни в одной форме, но в этом случае запрограммирована конечность жизни как явления: видоспецифичность обмена веществ неизбежно ведет к исчерпанию ресурсов и «загрязнению» среды продуктами жизнедеятельности, которые невозможно исполь- ювать вторично.
Устойчивое существование жизни возможно лишь при многообразии, разнокачественности ее форм, специфика обмена которых обеспечивает последовательное использование выделяемых в среду продуктов метаболизма, формирующее генеральный биогенный круговорот веществ. Это отмечал еще В.И. Вернадский: «Геохимика может интересовать только проблема создания комплекса жизни в биосфере, т. е. создание биосферы» (В.И. Вернадский, 1967).
В простейшем виде такой комплементарный набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот1.
Основные элементы, мигрирующие по цепям биологического круговорота,— углерод, водород, кислород, азот, калий, кальций, кремний, фосфор и др.
Продуценты[VIII] — это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне — общее условие жизнедеятельности всех организмов; по энергии все биологические системы — открытые) Их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.
Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоав- тотрофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380—710 нм. Это главным образом зеленые (хлорофиллоносные) растения, но к фотосинтезу способны и представители некоторых других царств органического мира.
Среди них особое значение имеют цианобактерии (синезеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент — бактерио- хлорин — и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза,— диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.Создавая органические вещества на основе фотосинтеза, фотоав- тотрофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относится не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.
Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти синезеленые. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, CO и некоторые другие вещества.
При всем многообразии конкретных форм продуцентов-автотро- фов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса акго- трофов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.
Консументы. Живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных организмов, живущих за счет продуктов, синтезированных фото- или хемосинтетиками.
Пшца, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей1, облигатно связанных с автотрофны- ми организмами (консументы I порядка) или с другими гетеротрофами, которыми они питаются (консументы II порядка; рис. 2.1).К консументам относится огромное количество живых организмов из разных таксонов. Их нет лишь среди цианобактерий и водорослей. Из высших растений к консументам относятся бесхлорофилльные формы, паразитирующие на других растениях; частично положение консументов занимают и растения со смешанным питанием (например, насекомоядные типа росянки). Все животные — консументы, и их роль в поддержании устойчивого биогенного круговорота очень велика.
Рис. 2.1. Упрощенная схема переноса вещества (сплошная лилия) и энергии (пунктирная линия) в процессе биологического круговорота (по В.Е. Соколову, ИЛ. Шилову, 1989)
Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые молельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Ho это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.
В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же — необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений (принцип Эшби). Живые системы — от организма до биосферы в целом — функционируют по кибернетическому принципу обратных связей. В дальнейшем тексте мы не раз встретимся с важностью различных форм биологического разнообразия (биологической разнокачественности) для устойчивого функционирования экосистем1.
Животные, составляющие основную часть организмов-консумен- тов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой — служит своеобразным «гарантийным механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.
Примером такой «пространственной гарантии» может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась — было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.
Заметим, что и разделение живых организмов на продуцентов, консументов и редуцентов — первый уровень биологической разнокачественности.
Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции биомассы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущения баланса биомассы смежных трофических уровней. Подробнее регуляторные механизмы в популяциях и экосистемах будут рассмотрены ниже.
В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эти вещества несут в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком —как бы «отставленное во времени» завершение циклов биологического круговорота.
Редуценты.1 К этой экологической категории относятся организ- мы-гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалии, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.
Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется СОг, из организма выводятся вода, минеральные соли, аммиак и т. д. Истинными редуцентами, завершающими цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.
В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, денитрифицирующие бактерии восстанавливают азот до элементарного состояния, сульфатредуцирующие бактерии—серу до сероводорода. Конечные продукты разложения органических веществ — диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше —до водорода; образуются также углеводороды.
От лат. reducens — возвращающий, восстанавливающий.
Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.
В наземной среде основная часть процесса деструкции органических веществ идет в почве — еще один пример целостности биосферных процессов и функциональной связи разных сфер обитания жизни. Первичные стадии разложения проходят с участием животных, которые измельчают ткани пищевых объектов, в процессе пищеварения разлагают сложные молекулы белков, углеводов и других веществ на более простые, легко доступные для окончательной деструкции с помощью бактерий и грибов. Биомасса наиболее активных животных — участников разложения органики —достигает больших величин (табл. 2.1).
Таблица 2.1. Численность наиболее обычных почвенных животных (экз/м2) (По П. Дювикьо, М. Танг, 1968)
Биотоп | Насекомые H HX личинки | Дождевые черви | Энхитреиды | Ногохвостхи | Клещи | Нематоды, млн. |
Леса | JOOO | 78 | 3 500 | 40 000 | 80 000 | 6 |
Луга | 4 500 | 97 | 10 500 | 20 000 | 40 000 | 5 |
Посевы | 1000 | 41 | 2000 | 10 000 | 10 000 | 1,5 |
Количество бактерий, грибов, актиномицетов и простейших, с помощью которых постепенно завершается минерализация органического вещества, также крайне велико (табл. 2.2).
Таблица 2.2. Численность микроорганизмов, млн/г сухой почвы (по И.М. Культиасову, 1982)
Организмы | Весна | Лето | Осень | Зима |
Бактерии | 58,40 | Кленовый лес 40,50 | 23,50 | 55,10 |
Актиномицеты | 4,80 | 2,80 | 2,20 | 2,70 |
Грибы | 0,45 | 0,28 | 0,25 | 0,43 |
Бактерии | 27,40 | Дубовый лес 13,20 | 13,40 | 40,10 |
Актиномицеты | 3,80 | 2,30 | 1,60 | 1,20 |
Грибы | 0,43 | 0.29 | 0,49 | 0,65 |
Активная деятельность организмов-разрушителей приводит к тому, что годичный опад органических веществ полностью разлагается в тропических дождевых лесах в течение I —2 лет, в лиственных лесах умеренной зоны — за 2—4 года, в хвойных лесах — за 4—5 лет. В тундре процесс разложения может длиться десятки лет. Интенсивность минерализации во многом зависит от температуры, влажности и других факторов.
Уровня организации живой материи. Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы —поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.
Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.
На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структур- но-функционалъными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).
Биогеоценоз (биоценоз). Это сообщество разных видов микроорганизмов, растений и животных, заселяющее определенные места обитания и устойчиво поддерживающее биогенный круговорот веществ. Поддержание круговорота в конкретных географических условиях — основная функция биогеоценоза. Она основана на пищевых взаимоотношениях видов, формирующих упорядоченную трофическую структуру биогеоценоза. В состав биогеоценоза с необходимостью входят представители трех принципиальных эколого-функциональных групп живых организмов — продуцентов, консументов и редуцентов.
В конкретных биоценозах эти три группы организмов представлены популяциями многих видов, состав которых специфичен для каждого конкретного сообщества. Функционально же все виды образуют несколько трофических уровней: продуцентов, консументов I порядка, консументов II порядка, ..., редуцентов. Взаимоотношения между видами разных уровней образуют систему трофических цепей, лежащую в основе общей трофической структуры биоценоза.
Обмен веществ строго видоспецифичен. Поэтому разнообразие видов в составе каждого трофического уровня, а следовательно, и в составе экосистемы в целом имеет большое биологическое значение. Во-первых, этим обеспечивается максимальная эффективность использования источников и форм энергии для синтеза первичной продукции и трансформации вещества на разных этапах биогенного круговорота, вплоть до полной минерализации и повторного вовлечения в цикл (рис. 2.1). Во-вторых, многообразие однозначных по функции в биогеоценозе видов выступает как мощный механизм устойчивости потоков вещества и энергии по пищевым цепям: в случае выпадения отдельных видов их место в преобразовании вещества и энергии может быть замещено «аналогами» из того же трофического уровня (рис. 2.2).
Таким образом, на уровне биогеоценозов биологическое разнообразие реализуется через расширение набора видов, что ведет к повышению устойчивости и эффективности функционирования биоценотических систем. Значение биоразнообразия настолько велико, что проблема обсуждается уже на международном уровне в виде обширной программы, курируемой Международным союзом биологических наук (IUBS).
Обладая специфической функцией, структурой и комплексом механизмов адаптации (гомеостазирования), биогеоценоз, будучи составной частью (субсистемой) в составе биосферы, в то же время представляет собой самостоятельную экологическую систему более низкого уровня. Иными словами, биогеоценоз есть система взаимодействующих популяций многих видов продуцентов, консументов и редуцентов {биоценоз), функционирующая в определенной среде (биотоп) и устойчиво осуществляющая биогенный круговорот веществ (рис. 2.3).
Форма существования жизни — вид. С позиций геохимической роли вида его наиболее существенным свойством является специфичность обмена веществ с внешней средой. Устойчивое участие видов в биогенном круговороте веществ в составе биогеоценозов осуществляется на уровне популяций.
Консументы Il порядка | ? | ? | ? | ? ? ? |
| I | I | I | IXXI |
Консументы I порядка | ? | ? | ? | ? I’ I I _ I ? |
| 1 | t | t | txxt |
Продуценты | ? | ? А | ? | ? ? ? Б |
Рис. 2.2. Функциональное замещение видов в составе биогеоценоза. А — исходная структура трофических цепей; Б — структура после выпадения одного из видов
Популяции. Это естественные группировки особей одного вида, заселяющих общие места обитания и связанных общностью генофонда и закономерными функциональными взаимодействиями. В современной экологии популяцию рассматривают как биологическую систему над- организменного уровня (рис.
2.3), характеризующуюся специфическими функциями и структурой (В.Н. Беклемишев, 1960; Н.П. Наумов, 1963;
С.С. Шварц, 1964, 1980; И.А.
Шилов, 1977, 1985; Т.A. Pa- ботнов, 1978, и др.).
Функция популяции как системы неоднозначна. С одной стороны, популяция есть форма существования вида В Рис. 2.3. Соотношение биологических систем конкретных УСЛОВИЯХ. В ЭТОМ разного уровня в составе биосферы (по В.Е. плане основная ее функция — Соколову, И А. Шилову, 1989)
сохранение (выживание) и На организма «^еспмяется обмен ве-
^ ' ' шеств с окружающей средой, на уровне популя-
воспроизведениевида В дан- [[ии обеспечивается устойчивое воспроизведение НЬГХ условиях. Эта функция ввда и его участие в биогенном круговороте, на обеспечивается общей Ha- уровне биогеоценоза поддерживается усгойчи- ПравлеННОСТЬЮ индивидуалЬ- вый круговорот веществ, на уровне биосферы — ных адаптаций составляющих глобальный круговорот популяцию особей (отсюда общность их морфобиологического типа) и формированием закономерных взаимоотношений, на основе которых поддерживается и регулируется размножение. В результате при непрерывной смене составляющих ее индивидов популяция как целостная структурная единица практически бессмертна.
С другой стороны, популяция каждого вида входит в состав биогеоценоза как одна из его функциональных единиц (субсистем). Био- ценотическая функция популяции —участие в биологическом круговороте —определяется видоспецифическим типом обмена веществ. Популяция представляет собой вид в составе экосистемы; все межвидовые взаимоотношения в биогеоценозах осуществляются на популяционном уровне. Устойчивая реализация биогеоценотической функции определяется специфическими механизмами популяционной авторегуляции, эффект которых выражается в самоподдержании популяции как системы в условиях сложной и изменчивой среды.
Таким образом, популяции обладают всеми качествами самостоятельных биологических систем. У большинства видов они пространственно структурированы, что определяет эффективное использование ресурсов среды и обеспечивает бесперебойные внутрипопуляционные взаимоотношения, составляющие сущность функционирования популяции как целого.
Особи в популяции при всем сходстве (видовой морфофизиологический тип) неравноценны по участию в общепопуляционных функциях; возможности проявления свойственных виду форм жизнедеятельности у особей в составе популяции в известной мере ограничены системой внутрипопуляционных отношений. Иными словами, популяция структурирована не только пространственно, но и функционально. Особи в популяциях постоянно обмениваются информацией1, что представляет собой специфический механизм взаимодействия живых организмов. Популяциям свойственны авторегуляторные механизмы, функционирующие на базе генетической, а у высших животных — и поведенческой разнокачественности составляющих их особей.
Отличительная особенность популяционных систем состоит в том, что все формы взаимодействия со средой и осуществления общепопуляционных функций опосредуются через физиологические реакции отдельных особей. Это возможно лишь при закономерных формах интеграции деятельности отдельных организмов: физиологические реакции осуществляются отдельными индивидами, однако направленность их такова, что конечный эффект реализуется на уровне популяции как целого; при этом он может быть инадаптивным для отдельных особей. Иными словами, физиология отдельных организмов в составе популяции как бы решает двойную задачу: физиологические процессы обеспечивают, с одной стороны, жизнь и адаптацию самой особи, а с другой — устойчивое поддержание функций целостной популяции.
Итак, структурированность, интегрированность составных частей (целостность), авторегуляция и способность к адаптивным реакциям — основные черты, свойственные популяции как биологической системе надорганизменного уровня.
Организм. Отдельный организм (особь) входит в состав популяции как структурно-функциональная подсистема, занимающая определенное положение в популяционных взаимосвязях и выполняющая соответствующие этому положению функции в общепопуляционных процессах. Только организм представляет собой конкретную единицу обмена веществ, и в этой функции он выступает как самостоятельная
Это относится не только к животным, как может показаться: «пассивная» информация через выделяемые в среду метаболиты столь же характерна для растений и микроорганизмов.
биологическая система, находящаяся в тесных взаимосвязях с внешними условиями и с более крупными биологическими системами.
Строго говоря, именно организм и был первым биологическим объектом, который рассматривался и как система функционально интегрированных морфологически обособленных частей. Эта мысль высказывалась известным физиологом Клодом Бернаром еще в конце XIX в. К. Бернар считал стабильность физико-химических условий во внутренней среде основой свободы и независимости живых организмов в изменчивых условиях среды.
He менее известный ученый У. Кеннон в 1929 г. ввел термин гомеостаз (от греч. homoios — одинаковый), означающий способность организма как целого поддерживать постоянство внутренней среды. Позднее идея целостного организма эффективно разработана акад. П.К. Анохиным в его концепции функциональных физиологических систем (1949).
Функция обмена веществ в организме определяется согласованной деятельностью различных систем органов; регуляция метаболических процессов лежит в основе адаптации жизнедеятельности организма к изменчивым условиям среды. Устойчивость обменной функции в глобальном масштабе определена способностью живых организмов к самовоспроизведению — уникальной функцией живого вещества.
Организм как среда жизни. В комплексе физиологических процессов на уровне организма можно выделить два типа реакций, различающихся функционально. Первая группа — это физиологические процессы, составляющие сущность жизни: переваривание и усвоение пищи, клеточный метаболизм, дыхание, водно-солевой обмен и т. д. Эти процессы в сумме обеспечивают жизнь организма, а в глобальном масштабе — функционирование соответствующего видовой специфике обмена звена в трофических цепях биогенного круговорота.
Ho в реальных природных условиях осуществление этих фундаментальных функций организма осложнено многоплановой и весьма динамичной по различным направлениям средой. Вторая группа физиологических процессов как раз и направлена на выживание организма в сложных условиях среды. Это механизмы адаптации к действию факторов, влияющих на протекание жизненно важных процессов, направленные на обеспечение бесперебойного осуществления фундаментальных физиологических функций в сложной и изменчивой среде. Их интегрированный результат выражен в поддержании гомеостаза организма, т. е. в создании относительного постоянства условий его внутренней среды.
Гомеостазированность организма создает предпосылки для использования его другими живыми существами в качестве среды постоянного или временного обитания. Таким образом, живое вещество как бы создает для себя в биосфере еще одну, биотическую, среду обитания.
Группа живых организмов, наиболее полно освоивших возможности обитания в других организмах,— вирусы. Крайняя простота их устройства—явно вторичное явление, возникшее на базе освоения особой, внутриклеточной, среды в организмах других таксонов. Свидетельство этому — высокая степень сложности и разнообразия генетической системы вирусов. Упрощение строения, ставшее возможным благодаря облигатной связи вирусов с хозяевами, обеспечивающими стабильные условия жизни, затронуло даже фундаментальные свойства, присущие подавляющему большинству форм жизни: вирусы не обладают раздражимостью и лишены собственного аппарата синтеза белка. Они не способны к самостоятельному существованию, и их связь с клеткой—это не только пространственная, но и жесткая функциональная связь, в которой клетка и вирус представляют некое единство.
Широко используют благоприятные условия внутренней среды организма различные паразиты из разных таксонов. Помимо паразитов благоприятные условия для жизни в организмах других видов находят различные симбионты. Взаимоотношения с хозяином в этом случае не столь однозначны: сожители могут быть нейтральны для хозяина, частично использовать его пищевые ресурсы или же, наоборот, снабжать организм хозяина продуктами питания. Во всех случаях формируются определенные взаимоотношения, в которых просматривается проявление специфических коадаптаций. .
Возможность использования живого организма в качестве среды обитания других живых существ как бы замыкает круг всеобщей взаимосвязи на уровне биосферы как целого: выступая как первое звено в циркуляции вещества в биологических системах разного уровня, организм в то же время функционирует как специфическая среда, в которой в свою очередь формируются и функционируют достаточно богатые сообщества живых организмов.
Еще по теме БИОСФЕРА КАК ЦЕЛОСТНАЯ СИСТЕМА:
- РОЛЬ В.И. ВЕРНАДСКОГО В ФОРМИРОВАНИИ СОВРЕМЕННОГО УЧЕНИЯ О БИОСФЕРЕ.
- 3. Пути преодоления противоречий в системе «природа-общество».
- Экология и учение о биосфере ОТЛИЧИЯ РАСТЕНИЙ и животных
- Биологические системы
- 2.2 ГОРИЗОНТАЛЬНАЯ СТРУКТУРА БИОСФЕРЫ И ИЕРАРХИЯ ЭКОСИСТЕМ. СИСТЕМА СИСТЕМ
- БИОСФЕРА КАК АРЕНА ЖИЗНИ
- ФУНКЦИОНАЛЬНЫЕ СВЯЗИ В БИОСФЕРЕ
- БИОСФЕРА КАК ЦЕЛОСТНАЯ СИСТЕМА
- 5.5. Биосфера
- Глава 5 Биосфера как специфическая геосфера