<<
>>

Ветры

Неравномерный нагрев поверхности Земли из-за времени года, облачности, способности водных объектов аккумулировать теплоту и прочие причины ведут к возникновению в тропосфере разнообразных потоков горизонтальной циркуляции воздушных масс (ветры, ураганы, циклоны, муссоны, пассаты и др.).

Главная причина переноса воздушных масс — подъем теплого легкого воздуха (конвекция) и замещение его снизу холодным. Сильнее всего за день прогреваются тропические области, где солнечные лучи падают на Землю почти отвесно. Воздух вблизи экватора устремляется вверх, приподнимая верхнюю границу тропосферы в тропиках до высоты около 17 км, что вдвое выше, чем у полюсов. Далее на больших высотах воздух растекается от экватора на север и юг (рис. 7.9).

Вертикальные конвекционные потоки переходят в горизонтальные. Теплый воздух в верхней части тропосферы частично охлаждается, отдавая теплоту в космическое пространство. В средних широтах он опускается, компенсируя убыль от конвекционного подъема, и устремляется обратно к экватору. Такова схема работы «тепловой машины» Земли.

Расчеты на основании приведенной схемы показывают, что время, за которое воздушная масса атмосферы перемещается на расстояние земного радиуса, составляет около недели. Неделя — характерное время изменения погоды. Она является границей между краткосрочной переменой погоды и долгосрочной, связанной с изменениями условий нагревания Земли. По тем же расчетам средняя скорость воздуха у поверхности Земли составляет около 10 м/с или 36 км/ч.

На высотах около 10 км, где плотность воздуха в 10 раз меньше, чем у поверхности, ветры дуют со скоростью около 100 м/с или даже нескольких сотен километров в час (от экватора воздушные потоки оттекают со скоростью около 200 м/с). Однако направлены они не на север и не на юг от экватора. Из-за вращения Земли верхние ветры и в Северном, и в Южном полушариях отклоняются и становятся западными, а нижние ветры, направляющиеся к экватору, приобретают восточное направление.

Такой восточный ветер, преобладающий на океанских просторах тропических широт, называют пассатом. Следовательно, схема на рис. 7.9 справедлива, но только как проекция направлений ветров на плоскость, проходящую через центр Земли и перпендикулярную плоскости экватора.

Конвективный подъем масс воздуха приводит к их попаданию в верхние разреженные слои атмосферы, а расширение сопровождается охлаждением. При температурах ниже точки росы происходит конденсация паров воды, образуются облака. Над тропиками на высоте 17 км воздух охлаждается до -75 °С (самое холодное место тропосферы) и становится очень сухим, так как почти вся его влага остается в облаках на высотах 1—5 км. Путь от экватора до средних широт, где воздух опускается к поверхности Земли, преодолевается очень быстро — приблизительно за сутки, поэтому поток теряет мало энергии. В результате опустившийся воздух увеличивает свою плотность, нагревается за счет этого и снова имеет температуру около + 30 °С, почти такую же, как была у экватора, но при меньшей внутренней энергии из-за значительно меньшей влажности.

Рис. 7.9. Экваториальная конвекция — причина ветров

Опускание очень сухого и теплого воздуха происходит на широтах 25—30° в обоих полушариях. Именно там находятся крупнейшие пустыни Земли: Сахара в Африке, Аравийская и Тар в Азии, а также южные пустыни Калахари в Африке и несколько пустынь в Австралии. На Американском континенте пустынь меньше (из-за горной цепи Анды—Кордильеры), но расположены они на тех же широтах.

Воздух опускается сверху и растекается по поверхности с малой скоростью. Соответствующие широты — это область штилей. Они были названы моряками «конскими широтами», ибо во времена парусного флота суда, случалось, месяцами не могли выбраться из них. Жара и жажда были причиной гибели прежде всего перевозимых морем лошадей.

Почти такое же объяснение пассатов было дано в 1735 г.

английским ученым Дж. Хэдли с той лишь разницей, что он рассматривал атмосферную циркуляцию от экватора до полюсов. В честь него тропический круговорот воздуха называют ячейкой Хедли.

Позже, в 1856 г. У. Феррел модифицировал схему Дж. Хэдли, дав объяснение средним направлениям потоков воздуха в полосе широт от 30—40 до 60—70°. Это, в частности, объяснило природу возникновения ураганных западных ветров у поверхности океана в Южном полушарии, известных как «ревущие сороковые». В честь У. Феррела названа ячейка атмосферной циркуляции в средних широтах с обратным направлением потоков (рис. 7.10).

Наконец, ближе к полюсам циркуляция воздуха происходит снова в прямом направлении. Подробнее объяснение причин возникновения указанных ячеек и общей схемы циркуляции воздуха в атмосфере приведено в специальной литературе.

Рассмотренная схема описывает только очень усредненную картину земных ветров. Фактическая картина сильно отличается от нее. Одни отклонения связаны с рельефом суши и разным альбедо1 суши, моря и их отдельных участков, другие — с погодой. Кроме того, пока невозможно отделить явления климата от погодных явлений. Переменчивость и неспокойствие — неотъемлемое свойство земной атмосферы. Несмотря на многие исследования, выполненные после Дж. Хэдли, исчерпывающего объяснения общей циркуляции атмосферы не найдено до сих пор. Облака

Воздействие облачности на биосферу многообразно. Она влияет на альбедо Земли, переносит воду с поверхности морей и океанов на сушу в виде дождя, снега, града, а также ночью закрывает Землю, как одеялом, уменьшая ее радиационное охлаждение.

Облако, по выражению В. Даля, — это «туман на высоте». Туман является разновидностью аэрозоля — дисперсной системы, состоящей из капель жидкости или твердых частиц, находящихся во взвешенном состоянии в газовой среде (обычно в воздухе). К аэрозолям относятся также дым, пыль. В атмосфере туман представляет собой скопление свободно витающих в воздухе водяных капель или ледяных кристаллов, резко снижающих прозрачность среды.

Облака бывают трех основных видов: слоистые, кучевые, перистые.

Слоистые облака (от лат. stratus — настил, слой). Они образуются при охлаждении малоподвижных воздушных масс, что происходит либо ночью, когда с верхней границы облака тепловое излучение уходит в космос, либо при движении теп- [43] лой влажной массы воздуха над холодной поверхностью Земли или холодной воздушной массой.

Кучевые облака (от лат. kumulus — груда, скопление). Они являются результатом конвекции (подъема) богатого влагой воздуха. Адиабатическое1 охлаждение приводит к тому, что на определенной высоте влажность воздуха достигает насыщенного состояния и начинается конденсация влаги. Это и есть нижняя граница кучевого облака, которая остается практически неподвижной, хотя воздух постоянно проходит через нее. Над верхней границей облака (состоящей обычно не из капель, а из кристалликов льда) воздух, охлажденный и лишившийся влаги, растекается в стороны и опускается вниз вокруг кучевого облака. С самолета можно видеть, что большое кучевое облако имеет правильно расположенные конвекционные ячейки, ровными рядами или отдельными холмами возвышающимися в шахматном порядке.

При мощной конвекции рождается туча — грозовое кучевое облако. Его обычная высота 7—10, а у экватора 12—15 км. В туче существуют восходящие и нисходящие потоки воздуха. Вниз он увлекается падающими каплями дождя или льдинками.

Перистые облака (от лат. kurros — локон, завиток). Они состоят из мелких кристаллов льда и образуются на больших высотах в быстрых турбулентных струях ветра.

Слоистые и кучевые облака вместе составляют гамму смешанных видов облаков.

Облака присущи и другим планетам с мощными атмосферами. Ими полностью скрыты поверхности Венеры и Титана, а поверхностью Юпитера и Сатурна считают верхние края облаков, ибо другой поверхности (ни жидкой, ни твердой) там нет. Химический состав облаков соответствует химическому составу атмосфер других планет: так, считают, что некоторые облака Венеры — это капельки кислоты.

Облака на Земле — существенная характеристика погоды. Преимущественно мощная облачность располагается над теми местами, где давление у поверхности низкое. Туда стремятся, закручиваясь из-за вращения Земли, поверхностные ветры (рис. 7.11). В центре такого циклона (от греч. zyklone — вращающийся, кольцо змеи) воздух поднимается вверх и, охлаждаясь, образует облака. В верхних слоях атмосферы циклона, [44]

над областью пониженного давления, наблюдается прямо противоположное явление — давление атмосферного воздуха выше среднего, характерного для данной высоты. В верхней тро-

а)              б)

Рис. 7.11. Схема циклона (а) и антициклона (б): 1 — давление у поверхности; 2 — направления поверхностных ветров; 3 — вертикальный разрез; 4 — направления высотных ветров; 5 — давление в верхней тропосфере; р — давление; г — высота над уровнем моря

посфере воздух из-за избыточного давления расходится от центра циклона.

Антициклон — область повышенного атмосферного давления у поверхности. В антициклоне сухой воздух опускается из верхней тропосферы, поэтому над местами, где он образовался, безоблачное, ясное небо.

Циклоны и антициклоны имеют диаметры около 200— 3000 км и в среднем существуют около недели. При этом есть на Земле и постоянный циклон, и летом, и зимой стоящий около Исландии. Он существует благодаря встрече теплых вод Гольфстрима с холодным полярным воздухом.

Погода нашей страны зимой во многом определяется Сибирским антициклоном, главную роль в формировании которого играют Гималаи, не пропускающие на север влажный воздух Индийского океана.

Число циклонов и антициклонов по всей Земле в каждый момент времени примерно одинаково. Облачность закрывает около половины поверхности планеты.

7.2.2.8. Роль атмосферы в удержании теплоты

В связи с наклоном оси вращения Земли на 66,5° к плоскости эклиптики количество солнечной радиации, приходящей на верхнюю границу атмосферы, является функцией географической широты местности и времени года (рис. 7.12).

При прохождении через земную атмосферу интенсивность солнечного излучения заметно уменьшается. Ослабление зависит от свойств облачного покрова, содержания пыли в атмосфере, а также от суточных и сезонных изменений различных физических величин.

В среднем за год 25 — 30% приходящего солнечного излучения отражается облаками обратно в космическое пространство. Еще 25% излучения поглощается, а затем переизлучает- ся облаками, пылью, газами, т. е. в виде нисходящей, диффузно рассеянной радиации. Примерно столько же поступает на поверхность Земли в виде прямой солнечной радиации.

Соотношение между прямым и рассеянным светом закономерно меняется в зависимости от географической широты. В полярных районах преобладает рассеянная радиация, составляющая до 70% суммарного лучистого потока, а в экваториальных областях она не превышает 30%. Это связано с лучшим прохождением лучей прямой радиации через атмосферу вертикально вниз, а не под малым углом к горизонту.

равноденствие солнцестояние равноденствие солнцестояние

Рис. 7.12. Сезонные изменения интенсивности облучения поверхности Земли солнечной радиацией на разных широтах Северного полушария

(по Дж. Андерсону): 1 — экватор; 2 — умеренная зона (40° с. ш.);

3 — полярная зона (80° с. ш.)

Часть излучения, достигающего поверхности, возвращается в атмосферу. Ее количество зависит от альбедо (отражающей способности) поверхности: снег отражает около 80 — 95% , травянистая поверхность — 20%, а темные почвы — только 8—10% потока приходящего излучения. Среднее альбедо Земли — 35—45%.

Большая часть поглощаемой водоемами и почвой солнечной энергии затрачивается на испарение воды. При конденсации паров выделяющаяся теплота идет на дополнительный нагрев атмосферы, основной нагрев которой происходит непосредственно при поглощении 20—25% излучения, поступающего от Солнца.

Атмосфера достаточно прозрачна для коротковолнового излучения Солнца и плохо пропускает длинноволновое (инфракрасное) излучение, переизлученное (не путать с отраженным!) нагретой земной поверхностью, что вызывает относительно усиленный нагрев приземных слоев воздуха, называемый парниковым эффектом. Атмосфера играет роль своеобразного «одеяла», удерживающего тепло аналогично стеклянной крыше парника. Пропускание атмосферой инфракрасного излучения зависит от содержания в ней «парниковых» газов, к которым в первую очередь относятся пары воды1 (Н20), диоксид углерода (С02), метан (СН4), хлорфторуглероды (фреоны2), гемиоксид азота (N20), а также тропосферный озон (03).

<< | >>
Источник: Николайкин Н. И.. Экология: Учеб. для вузов. 2004

Еще по теме Ветры:

  1. ГЛАВА ЧЕТВЕРТАЯ
  2. ГЛАВА ШЕСТАЯ
  3. ГЛАВА СЕДЬМАЯ
  4. География древнейшего Ближнего Востока
  5. ПОПРАВКА по ИЗДАНИИ первой книги относительно северной полосы
  6. ГЛАВА VI о землях в отношении к земледелию и КЛИМАТУ
  7. Узел «Четыре ветра»
  8. Глава VI 4$ Мифология (продолжение)
  9. Глава XIII ф Анимизм ( продолжение)
  10. Глава пятая С ПОПУТНЫМ ВЕТРОМ МОНОПОЛИЙ - В РЕШАЮЩЕЕ НАСТУПЛЕНИЕ