<<
>>

ЛАЗЕРНЫЙ ЛУЧ В РОЛИ СВЕРЛА

Сверление отверстий в часовых камнях-с этого начиналась трудовая деятельность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников скольжения.

При изготовлении таких подшипников требуется высверлить в рубине - материале весьма твердом и в то же время хрупком-отверстия диаметром всего 1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с использованием сверл, изготовленных из тонкой рояльной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель- ных перемещений. Для сверления одного камня требовалось до 10-15 мин.

Начиная с 1964 г. малопроизводительное механическое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие-он его пробивает, вызывая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в част-

29

ности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме-камень в секунду. Это в тысячу раз выше производительности механического сверления!

Вскоре после своего появления на свет лазер получил следующее задание, с которым справился столь же успешно,-сверление (пробивание) отверстий в алмазных фильерах. Возможно, не все знают, что для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью,-ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным.

Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстие в алмазе-сквозь так называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно-для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказалось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. />Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». В качестве примера расскажем о проблеме сверления отверстий в подложках микросхем, изготавливаемых из глиноземной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изделия, искажалось взаимное расположение высверленных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли об-

30

Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя, придают ему необходимый профиль. Проволока, получаемая при протягивании через фильеру, имеет диаметр d

Эти аккуратные отверстия диаметром 0,3 мм пробиты в пластинке из глиноземной керамики толщиной 0,7 мм с помощью С02-лазера

жиг. С помощью лазеров пробивают в керамике очень тонкие отверстия-диаметром всего 10 мкм. Заметим, что механическим сверлением такие отверстия получить нельзя.

То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах. Прошло сравнительно немного времени и стало ясно, что лазерный

луч может успешно применяться не только для сверления, но и для многих других операций по обработке материалов. Так что сегодня мы можем говорить о возникновении и развитии новой технологии - лазерной.

<< | >>
Источник: Тарасов Л.В.. Знакомьтесь - лазеры. 1988

Еще по теме ЛАЗЕРНЫЙ ЛУЧ В РОЛИ СВЕРЛА:

  1. ЛАЗЕРНЫЙ ЛУЧ В РОЛИ СВЕРЛА
  2. Приложение 2 МЕТОДИКА УСТАНОВЛЕНИЯ ПРИЧИН, УСЛОВИЙ, ОБСТОЯТЕЛЬСТВ И МЕХАНИЗМА РАЗРУШЕНИЯ СТРОИТЕЛЬНОГО ОБЪЕКТА
  3. ВОЕННО-ПОЛИТИЧЕСКАЯ ИСТОРИЯ ЭЛЛИНИСТИЧЕСКОГО ПЕРИОДА
  4. Англо-русский терминологический словарь по микро- и наносистемной технике