<<
>>

Мониторинг состояния природной среды и экологическое прогнозирование

Усилия по охране природных ресурсов требуют тщат,елънся планирования как на национальном так и международном уровнях. Для такого планирования требуется не только достало

но полная информация о текущем состоянии экосистем и уровне загрязнения природной среды, о превышении норм допустимых антропогенных нагрузок, кризисных и катастрофических ситуациях, но и о развивающихся в биосфере тенденциях (и отрицательных, и положительных), в том числе об эффективности принимаемых мер по охране природы и снижению загрязнения.

Необходимо также своевременное оповещение о вновь возникших опасностях.

В терминах системного анализа в системе цивилизация—биосфера должна присутствовать стабилизирующая отрицательная обратная связь, включающая в себя органы, принимающие меры по охране природной среды, и систему информационного обеспечения этих органов, роль которой выполняет мониторинг антропогенных изменений природной среды и состояния возобновимых ресурсов, сокращённо называемый экологическим мониторингом. Замкнутый контур этой обратной связи есть контур экологического регулирования (рис. 6.3).

Таким образом, система регулярных наблюдений за изменениями в биосфере под влиянием человеческой деятельности называется экологическим мониторингом.

В принципе систематические наблюдения за состоянием природной среды ведутся людьми на протяжении всей истории. Жрецы Древнего Египта тщательно наблюдали за разливами Нила, их сроками и высотой подъёма воды и даже научились прогнозировать эти параметры. Аналогичные «службы» существовали, по-видимому, и в Древней Месопотамии. Столетиями фиксировались сроки зацветания вишни — сакуры в Японии. Систематические научные наблюдения за погодой в Европе ведутся уже около двух веков. Все эти наблюдения сосредоточены на изменениях в природе, вызванных естественными причинами и происходящих в течение длительных интервалов времени.

В отличие от естественных факторов, антропогенные воздействия могут приводить к очень быстрым изменениям в состоянии биосферы, процессам, скорости которых в сотни и тысячи раз больше естественных. Тем не менее система мониторинга, как правило, не требует организации сети новых наблюдательных станций, линий связи и центров обработки данных, а в большинстве случаев опирается на развитую инфраструктуру гидрометеорологических служб и, прежде всего, на Всемирную службу погоды Всемирной метеорологической организации.

Рис. 6.3. Информационные и материальные потоки в системе цивилизация - биосфера, обеспечивающие устойчивость системы, и роль мониторинга природной среды как элемента обратной связи

Глобальная система мониторинга окружающей среды (ГСМОС) была создана совместными усилиями мирового сообщества (основные положения и цели программы были сформулированы в 1974 году на первом межправительственном совещании по мониторингу) и объединила национальные системы практически всех стран.

Основными функциями экологического мониторинга являются: выявление факторов, воздействующих на природную сре ду, оценка их интенсивности и определение источников; оценка фактического состояния природной среды; прогноз изменений в природной среде.

Факторов, воздействующих на природную среду, очень много, и они весьма разнообразны как по характеру воздействия, так и по своей природе. Соответственно, весьма разнообразны и методы, используемые в мониторинге.

При оценке химического и радиоактивного загрязнения наряду с измерением уровня загрязнения (концентрации загрязняющего вещества или дозы радиоактивного излучения) часто приходится решать трудную, а порой и почти неразрешимую задачу определения местоположения и интенсивности неизвестного источника загрязнения. Проблема состоит в том, что мощный удалённый источник может создать в точке измерения такую же (или даже большую) концентрацию загрязняющего вещества, как и слабый локальный.

Например, около 85 % кислотного загрязнения на территории Норвегии и Швеции и до 50 % — на европейской территории России создаётся источниками, расположенными в Центральной Европе, а до 60 % загрязняющих воздух веществ в Японии приходят из Китая. В тех случаях, когда прямые измерения не дают однозначного ответа об источнике, для его определения разрабатываются специальные математические методы и изощрённые компьютерные программы.

Химический мониторинг требует для своей организации весьма совершенной и чувствительной аппаратуры и соблюдения аккуратности при отборе проб воздуха, воды или почвы. Предельно допустимые концентрации многих наиболее опасных веществ находятся на грани обнаружения их присутствия. Достаточно вспомнить (см. табл. 4.1)^ что ПДК для диоксина в воздухе составляет одну молекулу на 10|6 молекул воздуха!

Мониторинг радиоактивного загрязнения сравнительно несложен, когда требуется оценить загрязнение изотопами, создающими при распаде гамма-излучение, и большинство постов наблюдения метеорологической сети оснащается гамма-дозиметрами. Как правило, при техногенном загрязнении в окружающую среду поступает смесь радионуклидов, среди которых есть все

типы излучателей. Поэтому в первом приближении степень опасности может быть оценена по уровню гамма-излучения. Тем не менее в ряде случаев такая оценка неприменима. Существует множество искусственных радиоактивных изотопов, которые практически не испускают гамма-кванты, но при этом являются очень опасными источниками излучения при попадании в организм. Мощность дозы, определяемая при помощи гамма-дозиметра, не может зафиксировать уровень загрязнения такими изотопами, и требуется использование специализированной аппаратуры.

Наземные измерения не дают полной картины загрязнения атмосферы, поэтому для отбора проб в её толще используется авиация. Мощным средством оценки загрязнения воздуха является лазерное зондирование, основанное на резонансном поглощении квантов с различными длинами волн.

Для оценки состояния почв и водоёмов наряду с химическим контролем широко используется биологический мониторинг. Суть его заключается в том, что в данной экосистеме выбирается один или несколько видов-индикаторов и осуществляется слежение за состоянием этих видов: численностью, возрастной структурой и распространённостью патологий. Например, наблюдая за состоянием пресноводных моллюсков, энергично фильтрующих воду, можно судить об уровне загрязнения водоёма токсичными веществами. Другой пример: усыхание верхушек у сосен свидетельствует о кислотном загрязнении атмосферы. Биоиндикаторы могут применяться и для оценки химического загрязнения веществами, опасными в ничтожных концентрациях, а потому трудно обнаружимых. При этом используется способность некоторых видов аккумулировать эти вещества. Например, дождевые черви — концентраторы кадмия, жуки-жужелицы — свинца, а мокрицы — меди. Особенно широко биологический мониторинг используется для оценки состояния морских и океанических экосистем.

Биологический мониторинг имеет то преимущество, что позволяет по ограниченному числу сравнительно просто измеряемых параметров судить о состоянии экосистемы в целом. Однако у него есть существенный недостаток, связанный с тем, что выбранные виды-индикаторы могут быть нечувствительны к каким-то типам загрязнения, весьма опасным для других видов, в частности человека.

Особое значение в наземном экологическом мониторинге играют биосферные заповедники. Изучение в них экосистем в нетронутом или почти нетронутом человеком состоянии позволяет получить те эталоны, по которым можно судить о степени антропогенной нагрузки на аналогичные экосистемы. При этом удаётся отделить антропогенные воздействия от природного дрейфа геофизических характеристик среды и состояния экосистем.

При экологическом мониторинге на региональном и глобальном уровне незаменимым является использование спутников Земли, целых спутниковых систем и обитаемых космических станций.

Космический мониторинг позволяет получать информацию о состоянии лесов, сельскохозяйственных угодий, растительности на суше, эрозионных процессах, фитопланктоне и уровне загрязнения океана, направлении и скорости распространения многих видов загрязнения.

Использование съёмок поверхности Земли в определённых диапазонах длин волн позволяет зондировать водные объекты на глубину до десятков метров. Использование многоспектральной съёмки позволяет не только определять типы почв, но и измерять такие их параметры, как влажность, температура и содержание гумуса, засоленность и т. д.

Из космоса определяется состояние растительности, её типы и биомасса, а также состояние и запасы пресной воды. Космические измерения позволяют судить и о состоянии верхних слоев атмосферы, в частности о состоянии озонового слоя и наличии в нём опасных малых газовых примесей.

Наконец, космический мониторинг позволяет чрезвычайно оперативно следить за появлением и распространением таких опасных явлений, как лесные пожары, пыльные бури и распространение нефтяных пятен при авариях танкеров и нефтедобывающих морских платформ.

<< | >>
Источник: Гальперин М. В.. Экологические основы природопользования. 2003

Еще по теме Мониторинг состояния природной среды и экологическое прогнозирование:

  1. 2. Правовые экологические требования
  2. ДИНАМИКА СОСТОЯНИЯ РАСТИТЕЛЬНОГО И ЖИВОТНОГО МИРА, СУШИ, РЫБНЫХ РЕСУРСОВ. МОНИТОРИНГ ОКРУЖАЮЩЕЙ СРЕДЫ
  3. ВИДЫ МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ
  4. 14.2. Экологическая экспертиза и ОВОС
  5. 12.2. Документы эколого-экономического прогнозирования и планирования, разрабатываемые по периодам времени
  6. Тема 9. ХОЗЯЙСТВЕННЫЙ МЕХАНИЗМ ПРИРОДОПОЛЬЗОВАНИЯ В УСЛОВИЯХ СТАНОВЛЕНИЯ РЫНОЧНЫХ ОТНОШЕНИЙ
  7. 3. Содержание оценки воздействия на окружающую среду
  8. Специальные информационные ресурсы.
  9. Охрана природы и окружающей человека среды (натурология)
  10. Нормативно-техническая документация (НТД)
  11. Глава 14. АДМИНИСТРАТИВНО-ПРАВОВОЙ СТАТУС ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ И ИХ ДОЛЖНОСТНЫХ ЛИЦ, КОМПЕТЕНТНЫХ РАССМАТРИВАТЬ ДЕЛА, ВЫТЕКАЮЩИЕ ИЗ АДМИНИСТРАТИВНЫХ ПРАВОНАРУШЕНИЙ
  12. Мониторинг состояния природной среды и экологическое прогнозирование
  13. Анализ эколого-ценностного потенциала учебных дисциплин
  14. МОНИТОРИНГ И ПРОГНОЗИРОВАНИЕ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ
  15. 3.1.5. Экологическое прогнозирование
  16. Охрана водоемов
  17. Заключение
  18. Мониторинг окружающей среды